Regulator of G-protein signaling subtype 4 mediates antihypertrophic effect of locally secreted natriuretic peptides in the heart.

نویسندگان

  • Takeshi Tokudome
  • Ichiro Kishimoto
  • Takeshi Horio
  • Yuji Arai
  • Daryl O Schwenke
  • Jun Hino
  • Ichiro Okano
  • Yuhei Kawano
  • Masakazu Kohno
  • Mikiya Miyazato
  • Kazuwa Nakao
  • Kenji Kangawa
چکیده

BACKGROUND Mice lacking guanylyl cyclase-A (GC-A), a natriuretic peptide receptor, have pressure-independent cardiac hypertrophy. However, the mechanism underlying GC-A-mediated inhibition of cardiac hypertrophy remains to be elucidated. In the present report, we examined the role of regulator of G-protein signaling subtype 4 (RGS4), a GTPase activating protein for G(q) and G(i), in the antihypertrophic effects of GC-A. METHODS AND RESULTS In cultured cardiac myocytes, treatment of atrial natriuretic peptide stimulated the binding of guanosine 3',5'-cyclic monophosphate-dependent protein kinase (PKG) I-alpha to RGS4, PKG-dependent phosphorylation of RGS4, and association of RGS4 and Galpha(q). In contrast, blockade of GC-A by an antagonist, HS-142-1, attenuated the phosphorylation of RGS4 and association of RGS4 and Galpha(q). Moreover, overexpressing a dominant negative form of RGS4 diminished the inhibitory effects of atrial natriuretic peptide on endothelin-1-stimulated inositol 1,4,5-triphosphate production, [(3)H]leucine incorporation, and atrial natriuretic peptide gene expression. Furthermore, expression and phosphorylation of RGS4 were significantly reduced in the hearts of GC-A knockout (GC-A-KO) mice compared with wild-type mice. For further investigation, we constructed cardiomyocyte-specific RGS4 transgenic mice and crossbred them with GC-A-KO mice. The cardiac RGS4 overexpression in GC-A-KO mice significantly reduced the ratio of heart to body weight (P<0.001), cardiomyocyte size (P<0.01), and ventricular calcineurin activity (P<0.05) to 80%, 76%, and 67% of nontransgenic GC-A-KO mice, respectively. It also significantly suppressed the augmented cardiac expression of hypertrophy-related genes in GC-A-KO mice. CONCLUSIONS These results provide evidence that GC-A activates cardiac RGS4, which attenuates Galpha(q) and its downstream hypertrophic signaling, and that RGS4 plays important roles in GC-A-mediated inhibition of cardiac hypertrophy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in regulator of G protein signaling-4 gene expression in the spinal cord of adrenalectomized rats in response to intrathecal morphine

Introduction: Regulators of G-protein signaling protein negatively control G protein -coupled receptor signaling duration by accelerating Gα subunit guanosine triphosphate hydrolysis. Since regulator of G-protein signaling4 has an important role in modulating morphine effects at the cellular level and the exact mechanism(s) of adrenalectomy-induced morphine sensitization have not been fully cl...

متن کامل

Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart.

RATIONALE Atrial and brain natriuretic peptides (ANP and BNP, respectively) exert antihypertrophic effects in the heart via their common receptor, guanylyl cyclase (GC)-A, which catalyzes the synthesis of cGMP, leading to activation of protein kinase (PK)G. Still, much of the network of molecular mediators via which ANP/BNP-GC-A signaling inhibit cardiac hypertrophy remains to be characterized....

متن کامل

A friend within the heart: natriuretic peptide receptor signaling.

leading cause of death throughout the industrialized nations of the world. Central to this statistic is our current inability to effectively repair or otherwise reverse severe forms of cardiac dysfunction and pathologic remodeling that characterizes a failing heart. In response to hypertension, ischemic disease, valvular insufficiency, viral myocarditis, and genetic mutations in sacomeric prote...

متن کامل

Natriuretic Peptide Signaling via Guanylyl Cyclase (GC)-A: An Endogenous Protective Mechanism of the Heart

Atrial and brain natriuretic peptides (ANP and BNP, respectively) are cardiac hormones, secretions of which are markedly upregulated during cardiac failure, making their plasma levels clinically useful diagnostic markers. ANP and BNP exert potent diuretic, natriuretic and vasorelaxant effects, which are mediated via their common receptor, guanylyl cyclase (GC)-A (also called natriuretic peptide...

متن کامل

Antioxidant actions contribute to the antihypertrophic effects of atrial natriuretic peptide in neonatal rat cardiomyocytes.

OBJECTIVE Reactive oxygen species (ROS) such as superoxide have been linked to the hypertrophic response of the heart to stimuli including angiotensin II (AngII), mechanical stretch, and pressure overload. We have previously demonstrated that cGMP and protein kinase G mediate the antihypertrophic actions of the natriuretic peptides in rat cardiomyocytes and isolated whole hearts. The impact of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation

دوره 117 18  شماره 

صفحات  -

تاریخ انتشار 2008